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Lecture 3

Data Converter Operation and Characterization

-- Linearity Metrics
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Integral Nonlinearity (ADC)
Nonideal ADC
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Integral Nonlinearity (ADC)
Nonideal ADC
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• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Quantization Noise

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation

Characteristics Dominantly Depend Upon 

Random Variables



Characteristics Dominantly Depend Upon 

Random Variables

• Dynamic characteristics
– Conversion Time or Conversion Rate (ADC)

– Settling time or Clock Rate (DAC)

– Sampling Time Uncertainty (aperture uncertainty or 
aperture jitter)

– Dynamic Range

– Spurious Free Dynamic Range (SFDR)

– Total Harmonic Distortion (THD)

– Signal to Noise Ratio (SNR)

– Signal to Noise and Distortion Ratio (SNDR)

– Sparkle Characteristics

– Effective Number of Bits (ENOB)



How important is statistical characterization of data 

converters?

Methods of Characterizing how Random 

Variables Affect Performance

• Analytical Statistical Formulation and Analysis

• MATLAB Simulations  (often using Monte-Carlo Analysis)

• Spectre/Spice Monte-Carlo Simulations

• Ignore Effects of Random Effects



How important is statistical analysis?
Example:   7-bit FLASH ADC with R-string DAC
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Case 1

Determine the yield if VOS has a Gaussian 

distribution (Normal) with zero mean and a 

standard deviation of 5mV

Why this assumption?



How important is statistical analysis?

Example:   7-bit FLASH ADC with R-string DAC
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Assume R-string is ideal, VREF=1V and VOS for

each comparator must be at most  +/- ½ LSB

Case 1

Determine the yield if VOS has a Gaussian distribution (Normal) with zero mean and a 

standard deviation of 5mV

The probability that a single comparator meets the VOS requirement is given by

½ LSB = 1V/(2(7+1))=3.9mV 
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How important is statistical analysis?

Example:   7-bit FLASH ADC with R-string DAC
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Case 1
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COMP VOSP f dV

mV
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Define XN=VOS/σ

σVOS=5mV
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COMP N

X
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−
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XN=3.9mV/5mV=0.78

0.78

COMP N

-0.78

P f dx= 

( )COMP NP 2 F 0.78 -1 = 2 .7823-1 = 0.565= • • Each comparator has 56.5% yield
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How important is statistical analysis?

Example:   7-bit FLASH ADC with R-string DAC
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Case 1 σVOS=5mV

COMPP  = 0.565

Since all comparators must be good, the ADC yield is

( ) ( )
127 127

ADC COMPY = P = 0.565

-32
ADCY =3.2 10•

This yield is essentially 0 and a standard deviation of 5mV is even not trivial 

to obtain with MOS comparators !

The effects of statistical variation can have dramatic 

effects on yield of data converters !



How important is statistical analysis?
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Bubbles:

An ideal ADC has a monotone relationship between analog inputs and digital outputs

Occasionally, some ADCs will exhibit one or more outputs where the 

Boolean output drops rather than increases

If expressed in thermometer code, the “thermometer” output never 

decreases with increasing inputs

This flash structure naturally provides a thermometer code 

output.   If the thermometer code output is not monotone, we 

say it has a bubble 
Major errors can occur in the TBD if a bubble exists in the thermometer code output 



How important is statistical analysis?
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Sparkle:

Occasionally, some ADCs will have one or more outputs that appear to 

be almost unrelated to the input (very large error in output, maybe only 

for small range of outputs or maybe only occur once in a while)

If this happens, the data converter is said to have “Sparkle”

This ADC architecture is vulnerable to sparkle if bubbles exist in the 

thermometer output code and the TBD, a logic circuit, does not 

appropriately handle them  



How important is statistical analysis?

Example:   7-bit FLASH ADC with R-string DAC
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Case 1 σVOS=5mV

Since all comparators must be good, the ADC yield is

-32
ADCY =3.2 10•

Note:   The specification in this example that requires no comparator has an 

offset voltage of larger than 0.5LSB may not be a good performance specification 

as the FLASH ADC may actually perform reasonably well even if some 

comparators have an offset that is larger than 0.5LSB.    A more useful 

requirement might be that there be no bubbles in the thermometer code output.  

Certainly if all comparators have an offset that is at most 0.5LSB, there will be no 

bubbles in the output code attributable to comparator offset but a modestly 

weaker constraint can also guarantee there are no bubbles.  With the 0.5LSB 

assumption, a specification that was dependent upon 127 uncorrelated random 

variables was obtained which made the analysis quite easy.  A “no bubble” 

specification could be approximated by stating that the maximum of the 127 

VOSk-VOSk-1must be less than VLSB.  This becomes an order statistic of 127 



How important is statistical analysis?

Example:   7-bit FLASH ADC with R-string DAC
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Case 2 Repeat the previous example if σVOS=1mV

( ) ( )
127 127

ADC COMPY = P = 0.999904

ADCY =0.988

3.9

3.9

COMP VOSP f dV

mV

mV−

=  XN=3.9mV/1mV=3.9

3.9

COMP N

-3.9

P f dx=  ( )COMP NP 2 F 3.9 -1 = 2 0.999952-1 = 0.999904= • •

This modest change in the offset voltage has increased the yield to 98.8%



How important is statistical analysis?
Example:  What will be the yield if two of the 7-bit FLASH ADCs

with yields of 98.8% are combined to obtain an 8-bit ADC?  
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ADCY =98.8%
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How important is statistical analysis?
Example:  What will be the yield if two of the 7-bit FLASH ADCs

with yields of 98.8% are combined to obtain an 8-bit ADC?  
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COMP VOSP f dV

mV

mV−

= 

Since one additional bit has been added, VLSB will decrease

From 7.8mV to 3.9mV.  Thus ½ LSB will be reduced to 1.95mV

With the same σVOS=1mV,  XN=1.95mV/1mV=1.95

1.95

COMP N

-1.95

P f dx=  ( )COMP NP 2 F 1.95 -1 = 2 0.97441-1 = 0.9488= • •

( ) ( )
255 255

ADC COMPY = P = 0.9488

-6
ADCY =1.52 10•

This seemingly simple extension of a circuit with a very high yield has essentially no 

yield !



How important is statistical analysis?
• Statistical analysis of data converters is critical

• Some architectures are more sensitive than others to statistical 

variations in components

• The onset of yield loss due to statistical limitations is generally quite 

abrupt and can have disastrous effects if not considered as part of the 

design process

• Substantially over-designing to avoid concerns about statistical yield loss 

is not a practical solution since the area penalty, the speed penalty, and 

the power penalty are generally quite severe

For the effects of local random variations of a parameter X, generally

0
X

C

A
σ  

A


where AC is the area of the matching critical components and A0 is a process parameter

Recall examples where  σVOS=5mV compared with σVOS=1mV 



Importance of statistical analysis – example
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What changes in area would be needed to decrease σVOS from 

5mV to 1mV?  
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Equivalent Number of Bits (ENOB)

• Often the performance of an n-bit data converter 
is not commensurate with that of an ideal n-bit 
data converter but more like that of an n-k bit 
data converter

• The equivalent number of bits (ENOB) is often 
used to characterize the actual level of 
performance 

• Different ENOB definitions depending upon 
which characterization parameter is of interest

(e.g.  INL, SFDR, SNR, …) 



INL-based ENOB
Consider initially the continuous INL definition for an ADC where the INL of an 

ideal ADC is XLSB/2

Assume

Define the equivalent  LSB by
EQ

REF
 LSBE n

X
X =

2
Thus (substituting for XREF into INL expression):

1

2

EQ
EQ R

R

n
n n LSBE

LSBEn

X2
INL= X 2

2
 

+ − =
  

Since an ideal ADC has an INL of XLSB/2, Setting term in [ ] to 1, can solve for nEQ to obtain

( )EQ R 2ENOB = n  = n -1-log 

R

REF
LSBR n

X
INL=  X

2
 =

where XLSBR is the LSB based upon the defined resolution , nR

where nR is the defined resolution

Observe:  the ENOB based upon the INL has been defined as the maximum 

deviation from the end-point fit line  



INL-based ENOB
( )R 2ENOB = n -1-log 

ENOB

½ nR

1 nR-1

2 nR-2

4 nR-3

8 nR-4

16 nR-5

Consider an ADC with specified resolution of nR and INL of ν LSB



Though based upon the continuous-INL definition, often used to define 

ENOB from INL viewpoint



$120 in 1000’s

( ) 16 1 1.85 13.15R 2ENOB n -1-log = = − − 

Is this close to 16-bit 

performance?



Test Setup Quite Sophisticated 
From ADI   AN-835



Test Setup Quite Sophisticated 
From ADI   AN-835



Test Setup Quite Sophisticated 
From ADI   AN-835



Can we depend on this “13-bit” INL performance?

( ) 16 1 3.58 11.42R 2ENOB n -1-log = = − − 

From INL viewpoint, performance is about  4.5 bits less than physical resolution

but does have other attractive properties



• Can be defined different ways

• Only given as typical



INL-based ENOB

( )R 2ENOB = n -1-log 

The ENOB based upon INL for both DACs and for ADCs is given  by the 

expression

Since the break-point INL is ideally 0, it is not related to either XLSB or XREF.

As such, the magnitude of the break-point INL is independent of the resolution.

It is thus difficult to naturally define the effective number of bits (ENOB) directly 

from the INL.  However, since the gain (from input to interpreted output) of an ADC 

is ideally 1, the break-point INL is conveying about the same linearity information

as the continuous-input INL.  As such, the ENOB based upon the break-point INL

is also defined by the same expression. 

where nR is the specified resolution and ν is the INL in LSB at the nR bit level.

Observe:  the ENOB based upon the INL has been defined as the maximum 

deviation from the end-point fit line  



( )R 2ENOB = n -1-log 

The ENOB based upon INL for both DACs and for ADCs is given by the 

expression

where nR is the specified resolution and ν is the INL in LSB at the nR bit level.

Question:   With this definition, is it possible for a data converter to have an 

ENOB that is actually larger than nR?

Question:  What is the ENOB of any 1-bit ADC?

Question:  Is it easy to design a 4-bit ADC with an ENOB of 7 bits?

Question:   Is it easy to design a 14-bit ADC with an ENOB of 16 bits?

YES !

∞ !

YES !

No !

Question:   Is ENOB (based on INL) a systematic metric?

Observe:  the ENOB based upon the INL has been defined as the maximum deviation from the end-point fit line  



INL-based ENOB

INXC0 CN-1

XREF

XOUT

LSBEX

2

LSBEX

A DAC with nEFF bits (ENOB) of resolution should have all outputs bounded by

+/- XLSBE/2 from the fit line so distance between fit line and upper/lower bounding 

lines determines the ENOB (XLSBE is relative to nEFF bits)

Interpretation of ENOB definition for a DAC:



INL-based ENOB

( )R 2ENOB = n -1-log 

The ENOB based upon INL for both DACs and for ADCs is given by the 

expression

where nR is the specified resolution and ν is the resolution in LSB at the nR bit 

level.

Observation:   The ENOB was defined relative to a fit line and was not 

dependent upon the number of DAC levels or the number of break points in 

the ADC

Question:   Then, why does nR appear in the ENOB expression? 



INL-based ENOB

( )R 2ENOB = n -1-log 

Question:   Then, why does nR appear in the ENOB expression? 

INXC0 CN-1

XREF

XOUT

LSBEX

INXC0 CN-1

XREF

XOUT

LSBEX

2
LSBEX

2

LSBEX

INXC0 CN-1

XREF

XOUT

LSBEX

2

LSBEX

Normalization was with respect to the LSB which is dependent upon nR



INL-based ENOB

Theorem:   The INL ENOB is an inherent property of a data converter 

independent of the number of bits of resolution specified for a data converter

Proof:   Assume a data converter has nRA bits of resolution and an INL of

νA LSB and a converter with the same linearity was specified with nRB bits 

of resolution and an INL of νB LSB.   

A A LSBAINL = X

But since it is assumed to have nRA bits of resolution

RA-nLSBA

REF

X
=2

X

Since there are simply two representations of the same nonlinearity, 

the absolute INL will be the same for both representations.  That is, 

INLA=INLB (1)

Based upon the first specification, the INL can be expressed as 

(2)

(3)



INL-based ENOB
Proof (cont)

( )A RA 2 AENOB  = n -1-log

Substituting from (4) into (5) we obtain 

and the ENOB is given by

By a similar argument we obtain

( )B RB 2 BENOB  = n -1-log

( ) ( )2B REF 2 BENOB =log X -1-log INL

2 RA-n
A A REFINL = X

Thus we obtain the expression

( ) ( )2A REF 2 AENOB =log X -1-log INL

and

A BENOB = ENOB

Now,since INLA=INLB, it follows that

(7)

(4)

(5)

(6)

(8)



INL-based ENOB

Theorem:   The INL-based ENOB can be equivalently expressed as

( ) ( )2 REFREF 2ENOB= log X -log INL -1

where INLREF is the INL expressed relative to XREF.

Proof: follows directly from proof of previous theorem

( ) ( ) ( ) ( )2 21− − =A REF 2 A REF 2 REFENOB=ENOB =  log X log INL log X -1-log INL

V
REF

REF

INL
INL

V
= where INLV is the deviation in volts from the end-point fit line 

and XREF=VREF

To avoid possible misinterpretation, INLREF defined below



INL-based ENOB

Theorem:   The INL-based ENOB can be equivalently expressed as

( ) ( )2 REFREF 2ENOB=log X -log INL -1

where INLREF is the INL expressed relative to XREF.

Again, observe the INL-based ENOB  does not depend upon the number of 

bits of resolution !

Recall previous question: can the INL-based ENOB on an n-bit ADC or DAC 

exceed n?

The answer was YES but in such a data converter it would probably be 

relatively easy to increase the number of bits of resolution while maintaining the 

ENOB, but applications would probably be limited 

Designing a data converter of more than 1 bit that has a high number of 

bits of linearity (as measured by ENOB)  is challenging 

If the INL-based ENOB of a data converter exceeds n, it is probably over-designed



Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Quantization Noise

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation



Differential Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT(k)-XOUT(k-1)

XOUT

Increment at code 4

( )
( ) ( )OUT OUT LSB

LSB

X k -X k-1 -X
DNL k =

X

DNL(k) is the actual increment from code (k-1) to code k  minus the ideal 

increment normalized to XLSB



Differential Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT(k)-XOUT(k-1)

XOUT

Increment at code 4

( )
( ) ( )OUT OUT LSB

LSB

X k -X k-1 -X
DNL k =

X

Increment at code k is a signed quantity and will be negative if XOUT(k)<XOUT(k-1)

( ) 
1 k N-1

DNL= DNL kmax
 

DNL=0 for an ideal DAC



Monotonicity  (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT

A DAC is monotone if XOUT(k) > XOUT(k-1) for all k 

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT

Monotone DAC Non-monotone DAC

A DAC is monotone if DNL(k)> -1 for all k

Theorem:

Definition:



Differential Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT(k)-XOUT(k-1)

XOUT

Increment at code 4

Theorem:  The INLk of a DAC (when corrected for gain error and offset) can be 

obtained from the DNL by the expression 

( )
k

k
i=1

INL = DNL i

Caution:  Be careful about using this theorem to measure the INL since errors

in DNL measurement (or simulation) can accumulate

Corollary:   The DNL of a DAC (when corrected for gain error and offset) can be 

expressed as 

DNL(k)=INLk-INLk-1



Differential Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

XOUT(k)-XOUT(k-1)

XOUT

Increment at code 4

Theorem:  If the INL of a DAC satisfies the relationship

then the DAC is monotone

LSB
1

INL <  X
2

Note:  This is a necessary but not sufficient condition for monotonicity



Differential Nonlinearity (ADC)
Nonideal ADC

( )
 T(k+1)  Tk  LSB

LSB

- -
DNL k =

X X X

X 

DNL(k) is the code width for code k – ideal code width normalized to XLSB

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

Code width 

for code C3 



Differential Nonlinearity (ADC)
Nonideal ADC

( )
 T(k+1)  Tk  LSB

LSB

- -
DNL k =

X X X

X 

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

Code width 

for code C3 

( ) 
2 k N-1

DNL= DNL kmax
 

DNL=0 for an ideal ADC

Note:  In some nonideal ADCs, two or more break points could cause transitions 

to the same code Ck making the definition of DNL ambiguous



Monotonicity in an ADC
Nonideal ADCs

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

Monotone ADC Nonmonotone ADC

Definition:   An ADC is monotone if the 

Note:  Some authors do not define monotonicity in an ADC. 

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XB1 XB2 XB3 XB4 XB5 XB6

XB7

OUT  k OUT  m  k  mX ( ) X ( ) whenever X X X X

Note:  Have used XBk instead of XTk in figure on right since more than one 

transition point corresponds to a given code



Missing Codes (ADC)
Nonideal ADCs

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4

XT5

XT6

XT7

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3

XT4

XT6

XT7

No missing codes One missing code

Definition:   An ADC has no missing codes if there are N-1 transition points and a 

single LSB code increment occurs at each transition point. If these criteria are not

satisfied, we say the ADC has missing code(s).

Note:  Some authors claim that missing codes in an ADC are the counterpart 

to nonmonotonicity in a DAC.  This association is questionable. 

Note:  With this definition, all codes can be present but we still say it has 

“missing codes”



Missing Codes (ADC)
Nonideal ADCs

Missing codes Missing code with all codes present

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4 XT5

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4XT5 XT6

XT7



Weird Things Can Happen

Nonideal ADCs

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XB1 XB2

XB3

XB4 XB5 XB6

XB7

XIN

OUTX

XREF

C0

C1

C2

C3

C4

C5

C6

C7

XT1 XT2 XT3 XT4XT5 XT6

XT7

• Multiple outputs for given inputs

• All codes present but missing codes

Be careful on definition and measurement  of linearity parameters to avoid 

having weird behavior convolute analysis, simulation or measurements

Most authors (including manufacturers) are sloppy with their definitions of data 

converter performance parameters and are not robust to some weird operation



LSB Definition
XLSB appears in many performance specifications but the definition of XLSB

is generally not given. This can cause modest inconsistencies in the definition 

of some performance specifications.

What is XLSB?



LSB Definition
XLSB appears in many performance specifications but the definition of XLSB

is generally not given. This can cause modest inconsistencies in the definition 

of some performance specifications.

Conventional Wisdom XLSB

R

REF
LSB n

X
X =

2

What is XLSB?

(XLSB determined by specified resolution and can not be measured)



Alternate LSB Definition
XLSB appears in many performance specifications but a distinction in XLSB

that differs from that obtained from specified values for XREF and nR is generally 

not given. This can cause modest inconsistencies in the definition 

of some performance specifications.

REF
LSB

X
X =

N
Alternate definitions of XLSB

where N is the measured number of DAC output levels

( ) ( )0 0
LSB

X N-1 -X 0
X =

N-1

where N is the measured number of DAC output levels and

X0(N-1) and X0(0) are last and first outputs respectively

( )  ( ) 0 0
kk

LSB

X k - X k

X =
N-1

max minuseful when extreme values do not occur at minimum 

and maximum input codes

( ) ( ) LSB 0 0
k

X = X k X k-1 max −useful for determining worst-case resolution of a DAC

Similar definitions can be made for XLSB of an ADC based upon the breakpoints

DAC

ADC



Alternate LSB Definition

Is the concept of an LSB that is based upon measurements useful?

In many control applications, the largest gap between outputs of a 

DAC is often of interest and though that is ideally VLSB, it may differ 

significantly 



ENOB based upon DNL

If it is assumed that an acceptable DNL for an n-bit data converter is XLSB/2,

then if the DNL is different from XLSB/2, the effective number of bits essentially

changes.

An ENOB based upon the DNL can be defined (homework problem)



ENOB relative to resolution 

If an n-bit data converter has an INL of ¼ LSB, it is really performing from a 

linearity viewpoint at the n+1 bit level and if it has an INL of 1/8 LSB it is really 

performing at the n+2 bit level

Correspondingly, if it has a DNL of ¼ LSB, it is also performing from a 

differential linearity viewpoint at the n+1 bit level

The ENOB (based upon INL) of a data converter can exceed the number of bits 

of resolution of the data converter

Some applications benefit from an ENOB that exceeds the 

resolution of the data converter

Summary of previous observations relating to ENOB (based upon INL) : 



Limitations of INL & DNL in Characterizing Linearity

• INL is a key parameter that is attempting to characterize the 

overall linearity of a DAC !

• INL is a key parameter that is attempting to characterize the 

overall linearity of an ADC !

Are INL and DNL effective at characterizing 

the linearity of a data converter?

• DNL is a key parameter that is attempts to characterize the 

local linearity of a DAC !

• DNL is a key parameter that is attempts to characterize the 

local linearity of an ADC !
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Limitations of INL & DNL in Characterizing Linearity

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

Consider the following 4 transfer characteristics, all of which have the same INL
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Limitations of INL & DNL in Characterizing Linearity

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF
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Limitations of INL & DNL in Characterizing Linearity

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

XIN

XOUT

XREF

XREF

Although same INL, dramatic difference in performance particularly when

inputs are sinusoidal-type excitations

INL also gives little indication of how performance degrades at higher frequencies

Spectral Analysis often used as an alternative (and often more useful in many 

applications) linearity measure for data converters
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Stay Safe and Stay Healthy !



End of Lecture 3




